On Classical Solutions of the Relativistic Vlasov-klein-gordon System
نویسندگان
چکیده
We consider a collisionless ensemble of classical particles coupled to a Klein-Gordon field. For the resulting nonlinear system of partial differential equations, the relativistic Vlasov-Klein-Gordon system, we prove localin-time existence of classical solutions and a continuation criterion which says that a solution can blow up only if the particle momenta become large. We also show that classical solutions are global in time in the one-dimensional case.
منابع مشابه
Global Weak Solutions of the Relativistic Vlasov-klein-gordon System
We consider an ensemble of classical particles coupled to a KleinGordon field. For the resulting nonlinear system of partial differential equations, which we call the relativistic Vlasov-Klein-Gordon system, we prove the existence of global weak solutions for initial data satisfying a size restriction. The latter becomes necessary since the energy of the system is indefinite, and only for restr...
متن کاملSoliton-like Solutions of the Complex Non-linear Klein-Gordon Systems in 1 + 1 Dimensions
In this paper, we present soliton-like solutions of the non-linear complex Klein-Gordon systems in 1+1 dimensions. We will use polar representation to introduce three different soliton-like solutions including, complex kinks (anti-kinks), radiative profiles, and localized wave-packets. Complex kinks (anti-kinks) are topological objects with zero electrical charges. Radiative profiles are object...
متن کاملApplications of He’s Variational Principle method and the Kudryashov method to nonlinear time-fractional differential equations
In this paper, we establish exact solutions for the time-fractional Klein-Gordon equation, and the time-fractional Hirota-Satsuma coupled KdV system. The He’s semi-inverse and the Kudryashov methods are used to construct exact solutions of these equations. We apply He’s semi-inverse method to establish a variational theory for the time-fractional Klein-Gordon equation, and the time-fractiona...
متن کاملAnalytical solutions for the fractional Klein-Gordon equation
In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004